Основной закон фильтрации

11 марта

Основной закон фильтрации. Он связывает расход потока с ли­нейными потерями напора, характеризующими затраты энергии по­тока на преодоление всех сил внутреннего сопротивления среды. В качестве кинематической характеристики такого потока используют скорость фильтрации V как отношение реального расхода Q потока ко всей площади его поперечного сечения Ѡ:

 

В этом случае величина о не является действительной скоростью фильтрации, поскольку при ее определении учитывается вся площадь сечения потока, а не площадь порового пространства, через которую фактически движется вода. Значение скорости V дает возможность легко сравнивать между собой различные потоки. Можно связать ве­личину недействительной скоростью и. Для этого следует активную пористость па ввести в площадь живого сечения по­тока, учитывая найдем:

Допущение о малости значений V позволяет использовать гидро­статический напор и считать поток ламинарным, имеющим линейную cвязь между V и I. При постоянном сечении Ѡ расход потока определен как:

Коэффициент пропорциональности к в выражении называется коэффи­циентом фильтрации и характеризует сопротивление по­рового или трещинного пространства горной породы движению воды, зависит от его структуры и свойств фильтрующейся воды. Исполь­зуя понятие скорости фильтрации, можно выражение выше записать в следующем виде:

Закон, устанавливающий линейную связь между v и i при филь­трации воды через порово-трещинное пространство геологической среды, называется основным законом фильтрации. Для реальной среды получить закон Дарси из теоретических соображений нельзя, так как неизвестна геометрическая структура пустотного пространства. Были предприняты попытки получить его для идеализи­рованной структуры порового пространства в виде параллельных трубочек-капилляров (идеальная среда) или круглых частиц одного радиуса (фиктивная среда).

При изучении фильтрации воды с переменными плотностью и вяз­костью используют другую форму закона Дарси. Влияние плотно­сти учитывается заменой градиента напора I на градиент гравита­ционного потенциала Iф, а влияние вязкости на силы внутреннего трения — введением в v коэффициента динамической вязкости µ:

где kп — коэффициент проницаемости, не завися­щий от свойств фильтрующейся жидкости и определяемый геометрией порово-трещинного пространства (что справедливо только для тех случаев, когда геометрия среды не изменяется под влиянием уплотне­ния и физико-химических взаимодействий воды и породы).

Продукция